This guide describes how to set up a data collection using Excel Reporting Templates.
1 Overview

1.1 What is a Reporting Template?

Reporting Templates enable data reporters to be provided with a custom built excel template for data reporting. The template provides a tabular form that the data provider can fill in with observation values. The form contains only the cells that the data provider is expected to report data for, and cells can make use of colour to provide pre-defined defaults for observation attributes such as observation confidentiality.

![Example layout for a data form](image)

Figure 1 - Example layout for a data form

The layout and content of a Reporting Template are defined by the data collection organisation. A Reporting Template may define multiple collection forms in a single worksheet, where each worksheet represents a collection for a specific Dataflow, for a specific Data Provider. In this way, the worksheet itself will only contain cells that the Data Provider is expected to report data for.

The remainder of this user guide discusses how the Fusion Registry can be used to define a Reporting Template form, how the Data Provider downloads a form to complete, and how the Fusion Registry can then be used to provide data validation, and transformation on the reported data.

1.2 About this Tutorial

This tutorial describes each process required to create an Excel template, from an empty Fusion Registry instance. Whilst this tutorial describes how to create some dependant structures, other tutorials cover these structures in more detail.

This tutorial describes the manual steps for creating structures.
2 Required Fusion Registry Metadata

To construct a Reporting Template, the Fusion Registry must first contain some required structural metadata, which can be briefly summarised as:

- **Agency** – to own the structures, this would be the organisation responsible for the data collection
- **Concepts** – these are the underlying components on which a Data Structure Definition is based, example Concepts are Frequency, Reporting Country, Counterparty Country, Time
- **Codelists** – these provide an enumerated list of allowed values which can be reported against each Dimension in a Data Structure, for example a Country Codelist would contain a list of valid countries (UK=United Kingdom, FR=France)
- **Data Structure Definition (DSD)** – this is used to describe a dataset in terms of its dimensionality, for example an Exchange Rates DSD may have three dimensions, Reference Area, Currency, and Time
- **Reporting Constraint (Dataflow)** – A reporting template is only able to build a table of cells, if it knows what the reporting universe is. A Series or Cube Region Constraint attached to the Dataflow is used to define the allowed series/codes for the dataset.
- **Reporting Constraint (Data Provider / Provision)** (optional) – additional constraints can be defined for specific Data Providers or Provision Agreements. For example, a Data Provider UK should only provide data for Reference Area UK
- **Provision Agreement** – this provides a link between a Data Provider and a Dataflow they are expected to report data for. For example, a Provision Agreement could link Data Provider UK to the Exchange Rates Dataflow. This is a many to many association as a single Data Provider could be set up to provide data for multiple Dataflows
- **Validation Scheme** (optional) – this is used to define mathematical rules for reported data. These rules are used to both embed formula in the worksheet, to assist the user in pre-calculating cell values, and for server-side validation
- **Data Provider** – this is an organisation responsible for reporting data
- **Reporting Template** – this requires a Series Constraint, which in turn links to the relevant metadata (DSD, Concepts, Codelists) required to build a template
Figure 2 - Relationship between the metadata constructs required to drive a Data Collection application (via Excel Templates). All structures in the diagram are owned by an Agency, some of these relationships are shown by dotted lines, others have not been included to not overcomplicate the diagram.

With the exception of the Reporting Template itself and the authoring of a Series Keys Constraint, this User Guide assumes that the reader is either familiar with the authoring of the remaining structural metadata components shown in the diagram above, or that the relevant structural metadata exists already.

2.1 Defining Reporting Universe

2.1.1 Series Constraint

Series Constraints are used to define the allowed series for a Dataflow. In terms of Reporting Templates there is a one-to-one mapping between a Series Constraint and an Excel worksheet. Each Report Template may link to one or more Series Constraints. There can only be a single Series Constraint against the same Dataflow, it is used to define the full universe of expected data for the Dataflow. A Report Template worksheet links directly to a Series Constraint, as the worksheet needs to know what the universe of data is, in order to build the table and table cells.

Note: Whilst a Series Constraint can describe a large universe of data (for example thousands of series), additional Series or Cube Region constraints can be used to further restrict allowable series at the Data Provider or Provision Agreement level. When a Report Template is created for a specific Data Provider, all the relevant constraints are taken into account, to build a smaller universe of data, relevant to the Data Provider for the specific Dataflow they are reporting data for.

Example Series Constraint

<table>
<thead>
<tr>
<th>FREQ</th>
<th>REPORTING_COUNTRY</th>
<th>COUNTERPARTY_COUNTRY</th>
<th>INDICATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>*</td>
<td>*</td>
<td>IND1</td>
</tr>
<tr>
<td>A</td>
<td>*</td>
<td>*</td>
<td>IND2</td>
</tr>
<tr>
<td>A</td>
<td>*</td>
<td>*</td>
<td>IND3</td>
</tr>
</tbody>
</table>

In the above example, there are three series defined, but the reporting and counterparty country are both wildcarded, meaning any reporting country can report data for any counterparty. If there are 180 countries in the country codelist, then this results in 180 * 180 * 3 series = 9,720 possible series.

For a specific Data Provider (UK for example) and additional Cube Region constraint could be added, to restrict the Reporting Country to UK, and the Counterparty Country could exclude UK. This reduces the possible series for the UK Data Provider to 3 * 1 * 179 = 537. Where 3 is the number of series in the series constraint, 1 is the number of possible reporting countries, and 179 is the number of possible counterparty countries (180 – 1 as UK is excluded from Counterparty country).

2.1.2 Cube Region Constraint

A Cube Region constraint is another way of describing what data is valid, however unlike a series constraint which defines each valid series key, a cube region defines which codes are valid for each Dimension. For example

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Valid Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQ</td>
<td>A</td>
</tr>
<tr>
<td>REF_AREA</td>
<td>UK,FR,DE</td>
</tr>
<tr>
<td>INDICATOR</td>
<td>IND1,IND2,IND3</td>
</tr>
</tbody>
</table>
The Reporting Template generation process then generates the set of valid series from this definition. The valid series is the Cartesian product of all the valid codes, for example from the table above there are 9 series (1 FREQ x 3 REF_AREA x 3 INDICATORS=9):

A:UK:IND1 A:FR:IND1 A:DE:IND1

If a Cube Region constraint does not constrain a dimension, then all the coded values for the dimension are deemed valid.

It is important to remember that a Reporting Template uses both the Constraint defined against the Datflow, in combination with Constraints against the Data Provider / Provision Agreement to work out the final set of valid series. So in the above example a Constraint can be defined against the Data Provider ‘UK’ to state they can only report data for REF_AREA=UK. This then restricts the final reporting universe to only 3 series.

2.1.3 Creating Constraints
A Constraint (Cube Region and Series) can be created using the Wizard, via Excel, or alternatively data can be loaded into the Fusion Registry and a Constraint can be derived from the unique list of series in the loaded dataset.

2.1.4 From User Interface
To create a Series Constraint via the Wizard:

1. Log into the Registry as an Admin or Agency user
2. Navigate to ‘Data’ → ‘Reporting Constraints’ page
3. Click the cogs button on the top left of the ‘Reporting Constraints’ page
4. Select ‘Create New Series (or Cube Region) Constraint’
5. Follow the Constraint Wizard steps. Step 1 requires an ID, Agency and Name.
6. A Constraint can be defined against a Provision Agreement or Dataflow, step 2 allows this link to be defined. It should be created against the Dataflow in order to create a Report Template.
7. Step 3 (optional CSV import) and 4 (manual editing) enable the allowed series to be defined. Note: The Fusion Registry allows series constraints to include wild carded dimensions. To wildcard a dimension, use the * symbol or leave the value unspecified. Please take care when using wildcarded constraints for the basis of a Report Template, as wildcarding a dimension leads to a Cartesian product of allowed series which can result in an exponentially large set of series

2.1.5 From Excel
An existing Constraint can be exported as Excel either from the Fusion Registry UI or via FusionXL. Excel simplifies the maintenance of large constraint definitions, however the Constraint must first exist in the Registry in order to export it. So a simple Constraint can first be authored in the Wizard, and then exported to Excel for completion. If using FusionXL, the constraint can be obtained in Excel, and then saved directly back to the Registry from the Save button on the Excel Ribbon.
2.1.6 From a Dataset

To create a Constraint from a Dataset:

1. Log into the Registry as an Admin or Agency user
2. Navigate to ‘Data’ → ‘Load Data’ page
3. Select either a data file, or URL to load, and click Load Data
4. On the Dataset Details page, ensure the dataset is linked to a Dataflow or Provision Agreement
5. Click on ‘Generate Reporting Constraints’
6. Choose the Constraint Type (Series or Cube Region), and click Generate

Figure 3 showing a series constraint definition in Excel

Once a Series Constraint is generated it can be viewed from the Report Templates page
2.2 Fix Floating Point Errors using DSD to specify Max Decimals

Microsoft Excel was designed around the IEEE-754 specification to determine how it stores and calculates floating point numbers. As such, a number resulting from a calculation may introduce an imprecision in the underlying file, this is different from how the number is presented to the user, where the number may be displayed as expected.

For detailed information read:

To understand the risk, a simple test shows the stored data (as Excel stores its information) for a worksheet which calculates cells B1 and C1 from cell A1.

To reduce the risk of the floating point errors being read into the Fusion Registry for transformation or storage, it is recommended to ensure the PrimaryMeasure of the Data Structure Definition has its format set to be of type double with the max number of decimals specified. The Fusion Registry will use this information to round the number as read from the spreadsheet.
3 Creating a Basic Excel Reporting Template

3.1 Overview

3.1.1 Purpose
The Collection Template is used to define an Excel Workbook which will be used to collect data. The Fusion Registry generates a workbook on demand for a specific Data Provider, with a pre-built data collection form according to the rules of what the Data Provider has been configured to provide data for. The Excel template will contain a worksheet per series constraint that is used to define a reporting universe of data.

This section describes how to create a basic Reporting Template.

3.1.2 Functionality

General

A Report Template is built using the metadata in the Data Structure Definition (DSD) and the metadata in the Series Keys Reporting Constraints.

Many reporting templates can be created using the same DSD. In this way there could be a different template for each Data Reporter, each containing only the Dimension and Attribute values that the Data Reporter is allowed report.

Multiple Worksheets can be authored for the same Spreadsheet

Dimensions

- A Dimension can be fixed to contain a single value, or can be excluded entirely from the Template
- Dimensions are specified to being represented in a Column or a Row in the Worksheet
- The order in which the Dimensions are shown in the Worksheet are specified explicitly, and need not be the same order that these are specified in the DSD

Any Dimension can use a Hierarchy in a Hierarchical Code List. Such a hierarchy can be used in the following ways:

- to create automated totals of values – the details for this are specified in a separate user guide.
- In the representation in the Worksheet

Attributes

An Attribute can be:

- Excluded from the Template
- Included in the “data” Table in the Worksheet
- Included in a separate Worksheet from that containing the data
- Can be allocated a specific colour to highlight different values
- Can be specified with a fixed value

Validation

Mathematical expressions can be applied to Dimensions by defining a Validation Scheme. These expressions will be included in the worksheet, enabling certain cells to be calculated automatically using these expressions. Validation Schemes are is detailed in a separate guide.
3.2 Creating the Template from the User Interface

3.2.1 Template Authoring Wizard

The Template is created or maintained by using the authoring Wizard. This menu is only available for users logged in with Agency or Admin privileges.

![Create New Reporting Template button](image)

Figure 6 showing the Create New Report Template button

3.2.2 Registry Metadata

The diagram below shows the structural metadata that are used in the example.

![Structural Metadata diagram](image)

Figure 7 showing Structural Metadata used to generate a Report Template

There are four stages to creating a Reporting Template and these are described below.
3.2.3 Stage 1 Details

![Reporting Template Wizard](image1)

Figure 8 showing step 1 of the Report Template Wizard

Fill in details for the Id, Version, and Name and select the Agency that will own this Report Template. Click on “Next”

3.2.4 Stage 2 Excel Worksheets

This allows a new Worksheet to be created or removed from the Workbook. As there are no current worksheets for this Report Template, the list of worksheets is not shown on this screen shot.

![Reporting Template Wizard](image2)

Figure 9 showing step 2 of the Report Template Wizard, no worksheets currently exist for workbook

In order to create a worksheet there must be a Series Constraint which is assigned to the relevant Dataflow for which a Reporting Template is to be authored. On adding a new Worksheet, the worksheet name will be generated based on the Series Constraint Id. The name can be changed if required.
Click on “Add Worksheet(s)”.

Note: There may be many Series Constraints for the same Dataflow if there are different validity dates.

Select the appropriate Series Constraint and click on “Next”.

3.2.5 Stage 3 Table Structure – Dimensions

Fixed Dimensions

As the Template Wizard now knows the universe of data for a Worksheet (via the Series Constraint), the wizard is able to inform the user which Dimensions contain the same value for all series. These Dimensions are considered fixed, and will either be displayed in header section of the output worksheet, or alternatively the Template can be told to exclude the Dimension from the worksheet. When excluding a Dimension from the worksheet, the correct fixed value will be read in correctly, but it will just not be displayed to the user.
Figure 12 showing fixed Dimensions, as derived from the Series Constraint. Some or all of these Dimensions can be eliminated from the generated Template by clicking on the appropriate “Exclude” box.

Rows and Columns

Next, the Wizard lists the rows and columns for the Dimensions.

Initially, all remaining Dimensions are listed in the “Table Rows”.

Use the Move to Column those Dimensions that are to be placed in the columns of the Template.

Use the Move Up and Move Down buttons to change the order in which the Dimensions are shown in the generated Report Template.

The Exc. Fixed checkbox, if checked, will not include the Dimension in the generated template IF there is only one value for that Dimension. This can occur if the Data Provider generating the template has additional Constraints, which results in the restriction of a Dimension to only one value.

Hierarchy
It is possible to apply a hierarchy to a Dimension. The hierarchy may be **implicit** which means ‘use the Codelist’s own hierarchical ordering’ or it can be **explicit** which is where the Dimension is linked to a Hierarchy from a Hierarchical Codelist. The hierarchy drop down will show any explicit hierarchies which reference the Codelist used by the Dimension. If no Hierarchies reference the Codelist used by the Dimension the drop down will just include **No Hierarchy** and **Implicit** as available options.

If the Dimension values are specified in a Hierarchical Code List then the Template Wizard shows the option to choose a Hierarchy.

When a Hierarchy is applied, the following rules are applied:

1. For a Table Row, the Hierarchy just specifies the order in which the codes are displayed, there is no indentation to represent child relationship.
2. For a Table Column
 a. If a Code in the hierarchy has no data to be collected for it, but contains child codes which do, the parent code will be included in the table as a grouping column, for example:

 | Europe | Asia | | | |
|---|---|---|---|---|
 | France | Germany | Poland | China | India |

 b. If a Code in the hierarchy has data and has child codes that have data, then the parent codes will be shown first followed by the child codes, for example:

 | Europe | France | Germany | Poland | Asia | China | India |

This can be seen in the following image showing a generated excel worksheet.
The final step of the Wizard allows the user to define how observation attributes are handled. They can either be:

- **Exclude from the Template** - do not collect this attribute
- **Include in the Excel Table** for data – This allows the user to report observation values and attribute values in the same table
- **Place the separate table in the same worksheet** – This allows the user to report the observation value and attribute value in the same worksheet, but there is a separate table for Observations and attributes
- **Place the separate table in a separate worksheet** – this creates a worksheet for reporting observation values, and a separate worksheet for reporting the attributes for the observations
- **Use colour to represent value** – this allows the user to give the cell a background colour, where each colour is linked to an attribute value. For example RED may link to Confidential, whereas Green links to Free.
- **Fix the value of the Attribute** – The Attribute is fixed to a pre-set value, defined in the Report Template Wizard.
- **Attribute value is conditional on other reported data** – This allows the agency to specify rules to derive an attribute based on other observation or attribute data reported. For example a rule could be applied to the Observation Status Attribute to say if the observation is missing then set the value to M.
Fixing an Attribute Value

It is possible to fix the value of an Attribute, and also to assign a default value for an Attribute if a value is not entered on the Worksheet by the Data Reporter. This is useful if the Attribute is Mandatory in the Data Structure Definition, and has a value that is commonly used, such as “A” for an Observation Status.

To change the fixed value, click **Change Value** which will open a drop down control from which an alternative value can be selected, as shown in the following image.

Note: Only coded attributes (attributes which take their representation from a Codelist) can be fixed.
Conditional Attributes

When specifying an attribute as conditional, a new table will be built on the page, allowing the user to add new conditional attribute rules for the attribute, as shown in the image below.

Note: Only coded attributes (attributes which take their representation from a Codelist) can be set to Conditional.

![Conditional Attribute Rules](image)

Figure 18 showing conditional attribute rules for OBS_STATUS attribute

To add a new rule, first make a choice in the Attribute Id column, this drop down will contain all the attributes which have been set to be conditional. Then choose an attribute value, which will be the output value that is derived when a rule is hit. The third column allows the specific rule to be set, and in some cases additional rule details are required. The available rules are:

- **Default Value** – The Attribute Value will be applied if the following conditions are met
 - Either observation data or attribute data is reported for the observation cell
 - No other rules conditional rules apply
- **Observation Present** – The Attribute Value will be applied the following conditions are met:
 - The observation value is present
 - No other attribute specific rules (attribute present, attribute not-present, or attribute value rules) are applied
- **Observation Missing** - The Attribute Value will be applied the following conditions are met:
 - The observation cell is left blank (no data reported)
 - No other attribute specific rules (attribute present, attribute not-present, or attribute value rules) are applied
- **Observation NaN** - The Attribute Value will be applied the following conditions are met:
 - The observation cell is left blank (no data reported)
 - No other attribute specific rules (attribute present, attribute not-present, or attribute value rules) are applied
- **Observation Value** – The Attribute Value will be applied if
 - The reported observation value matches an equality operation which is either Equals, not Equals, Less Than, Less Than or Equal, Greater Than, Greater Than or Equal
 - No other attribute specific rules (attribute present, attribute not-present, or attribute value rules) are applied
- **Attribute Present** – The Attribute Value will be applied if another Attribute, specified in the Rule Detail, has a reported value, regardless of what that value is
- **Attribute Not Present** – The Attribute Value will be applied if another Attribute, specified in the Rule Detail, has not got a reported value
• Attribute Value – The Attribute Value will be applied if another Attribute, specified in the Rule Detail, has a specific reported value. This rule can only be applied if the dependant attribute is Coded.

Using Colour to Represent an Attribute

When selecting which attribute to be used as a Colour Attribute, the Wizard will automatically create a table of Attribute values against properties, as shown in the image below.

Note: Only coded attributes (attributes which take their representation from a Codelist) can be set to use Colour to represent the code.

![Observation Status Colours](image)

Figure 19 showing the OBS_STATUS attribute making use of the colour placement to define its value

Attributes can be selected to be included in the report by checking the Include checkbox. If an attribute is selected for inclusion, it will appear in a key at the top of the generated excel template, as shown in the following image.

![Observation Status Defaults](image)

Figure 20 showing the Colour key in cells G2 to G4. The use can use Excel’s format painter to copy the colour and paint it onto observation cells to set the observation status for that observation cell.

If an attribute is selected as the Default (by checking the default checkbox) then this will be the colour applied to all observation cells on report creation, except observations who’s defaults have been overridden. To override the default colour for an observation, click the Edit Defaults button positioned next to the other Observation Attribute.
Figure 21 showing overridden defaults for Provision Value and Estimated Value Observation Status

Defaults can be set for an attribute by selecting the absolute key value (as shown in the Estimated value in the image above) or a wildcarded key (as shown in the Provision value in the image above). The absolute value will take precedence if there is a conflict.

To select absolute values, simply check the series keys which will use this attribute value in the list of series in the right hand pane of the edit pop-up.

Figure 22 showing two series selected to apply ‘Estimated values’ for as a default observation status in the generated template

To apply a wildcarded key as a default, use the series filter controls on the left pane of the pop-up window to select the relevant code ids, and then click Add wildcard filter.

Figure 23 showing how to apply a wildcarded key for applying default observation attribute values
The generated template will then contain cells coloured in according to the defaults applied, as shown in the following image.

![Figure 24 showing an example output with cells coloured in according to the defaults defined in the Report Template Wizard](image)

The user is able to change the cell colours should they require to change the default value. This can be achieved by selecting the cell in the key containing the colour they wish to apply, and then clicking the Format Painter in the Excel Ribbon. The user can then apply this colour to a selection of cells, as they see fit.

![Figure 25 showing the format painter option, under the Home tab in the Excel Ribbon](image)

Click on “Finish” to save the Reporting Template in the Registry.

3.3 Generate Reporting Template

An excel workbook can only be created by an authenticated user with the correct permissions. The user must either be of type Admin, Agency, or Data Provider. A Data Provider can only create an Excel workbook for templates which they report data for. If a Report Template contains multiple worksheet definitions, and the Data Provider is only configured to report data for a subset of these (as defined by their Provision Agreements), then the generated workbook will only contain the worksheets for which they can report data.

An Excel template can be generated from the Fusion Registry Web Service. The Web Services guide documents this API.

To generate a Report Template from the User Interface select Data-> Report Templates from the left hand menu and click on the Report Template to generate an Excel workbook from.
Click on “Generate Template”

Select the Data Provider, enter the Report Period and click on “Generate”. Note that the Reporting Period must use the valid syntax for dates in SDMX. Examples are:
4 Validation and Transformation

Validation and Transformation for Excel workbooks is consistent with any other data format. The Fusion Registry is able to transform an Excel Workbook into any of the supported output formats (SDMX, EDI, CSV for example) using the Transformation web services, or via the Data Load function in the User Interface. The same validation rules are used to check conformance as for all other data formats (ensure the data is valid with regards to what is reported, ensure all attributes are present). If a Validation Schemes have been created, then these additional mathematical expressions will also be used in validation, which is consistent with any other data format.

However, it should be noted that if any Validation Schemes exist which apply mathematical expressions, these expressions will be included in the generated worksheet. For example, in the following image, some cells are showing a value of 0 in the generated sheet. Each one of these cells has a formula associated with it, based on the expressions in the associated Validation Scheme. In the example below, the selected cell will be calculated using cells G22 + G28. The user could of course provide data for the aggregate and not the breakdown, so it is possible to override this calculation by simply typing a reported value into the cell. The Fusion Registry will still apply the same validation criteria when validating the dataset, ensuring the reported values in the dataset conforms to any expressions in the Validation Scheme.

Note: Validation Schemes are documented in their own user guide.

Figure 26 showing a generated worksheet containing cell formula based on expressions in a Validation Scheme